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Abstract We bridge the properties of the regular triangular, square, and hexagonal hon-
eycomb Voronoi tessellations of the plane to the Poisson-Voronoi case, thus analyzing in
a common framework symmetry breaking processes and the approach to uniform random
distributions of tessellation-generating points. We resort to ensemble simulations of tessel-
lations generated by points whose regular positions are perturbed through a Gaussian noise,
whose variance is given by the parameter α2 times the square of the inverse of the aver-
age density of points. We analyze the number of sides, the area, and the perimeter of the
Voronoi cells. For all values α > 0, hexagons constitute the most common class of cells, and
2-parameter gamma distributions provide an efficient description of the statistical properties
of the analyzed geometrical characteristics. The introduction of noise destroys the triangular
and square tessellations, which are structurally unstable, as their topological properties are
discontinuous in α = 0. On the contrary, the honeycomb hexagonal tessellation is topolog-
ically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise
with α < 0.12. For all tessellations and for small values of α, we observe a linear dependence
on α of the ensemble mean of the standard deviation of the area and perimeter of the cells.
Already for a moderate amount of Gaussian noise (α > 0.5), memory of the specific initial
unperturbed state is lost, because the statistical properties of the three perturbed regular tes-
sellations are indistinguishable. When α > 2, results converge to those of Poisson-Voronoi
tessellations. The geometrical properties of n-sided cells change with α until the Poisson-
Voronoi limit is reached for α > 2; in this limit the Desch law for perimeters is shown to
be not valid and a square root dependence on n is established. This law allows for an easy
link to the Lewis law for areas and agrees with exact asymptotic results. Finally, for α > 1,
the ensemble mean of the cells area and perimeter restricted to the hexagonal cells agree
remarkably well with the full ensemble mean; this reinforces the idea that hexagons, be-
yond their ubiquitous numerical prominence, can be interpreted as typical polygons in 2D
Voronoi tessellations.
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1 Introduction

Given a set X of discrete points in the Euclidean plane, for almost any point a in the plane
there is one specific point xi ∈ X which is closest to a. The set of all points of the plane
which are closer to a given point xi ∈ X than to any other point xj �= xi, xj ∈ X, is the in-
terior of a convex polygon usually called the Voronoi cell for xi . The set of the polygons
Πi , each corresponding to (and containing) one point xi ∈ X, is the Voronoi tessellation
corresponding to X, and provides a partitioning of the plane [35, 36]. As well known, the
Delaunay triangulation gives the dual graph of the Voronoi tessellation [10]. Voronoi tes-
sellation can be defined for general N -dimensional Euclidean spaces, and extensions to the
case of non-Euclidean spaces have also been provided [27].

Since the Voronoi tessellation creates a one-to-one optimal—in the sense of shortest
distance—correspondence between a point and a polytope, 2D and 3D Voronoi tessellations
have long been considered for applications in several research areas, such as telecommu-
nications [30], biology [15], astronomy [22], forestry [4] atomic physics [17], metallurgy
[38], polymer science [12], materials science [6]. In solid-state physics, the Voronoi cells of
the single component of a crystal are known as Wigner-Seitz cells [1, 5]. In a geophysical
context, Voronoi tessellations have been widely used to analyze spatially distributed obser-
vational or model output data [34]. In particular, they are a formidable tool for performing
arbitrary space integration of sparse data, without adopting the typical procedure of adding
spurious information, as in the case of linear or splines interpolations [25]. Actually, it was
this context that Thiessen and Alter, with the purpose of computing river basins water bal-
ance from irregular and sparse rain observations, discovered independently for the 2D case
the tessellation introduced by Voronoi just few years earlier [33]. Moreover, a connection
has been recently established between the Rayleigh-Bènard convective cells and Voronoi
cells, with the hot spots (locations featuring the strongest upward motion of hot fluid) of the
former basically coinciding with the points generating the Voronoi cells, and the locations
of downward motion of cooled fluid coinciding with the sides of the Voronoi cells [28].

The quest for achieving low computational cost for actually evaluating the Voronoi tes-
sellation of a given discrete set of points X is ongoing and involves an extensive research
performed within various scientific communities [3, 7, 18, 31, 37]. The theoretical investiga-
tion of the statistical properties of general N -dimensional Voronoi tessellations has proved
to be a rather hard task, so that direct numerical simulation is the most extensively adopted
investigative approach. For a review of the theory and applications of Voronoi tessellations,
see [2, 27].

A great deal of theoretical and computational work has focused on the more specific
and tractable problem of studying the statistical properties of Poisson-Voronoi tessellations.
These are Voronoi tessellations obtained starting from a random set of points X generated as
output of a homogeneous Poisson point process. This problem has a great relevance at practi-
cal level because it corresponds, e.g., to studying crystal aggregates with random nucleation
sites and uniform growth rates. Exact results concerning the mean statistical properties of
the interface area, inner area, number of vertices, etc. of the Voronoi cells have been ob-
tained for general Euclidean spaces [8, 9, 13, 14, 26]. Recently, some important results have
been obtained for the 2D case [20]. The results of direct numerical investigations have been
found in agreement with the theoretical findings, and, moreover, have shown that both 2-
parameter [23] and 3-parameter [21] gamma distributions fit up to a high degree of accuracy
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the empirical pdfs of the number of vertices, of the perimeter and of the area of the cells.
Very extensive and more recent calculations have basically confirmed these results [32]. In
spite of several attempts, the ab-initio derivation of the pdfs of the geometrical properties of
Poisson-Voronoi tessellations has not been yet obtained, except in asymptotic regimes [19].
Nevertheless, it is interesting, and somewhat confusing, to note that the asymptotic results
regarding the statistics of the number of sides of the cells are not compatible with the gamma
distribution family.

In recent years, various studies have focused on the geometrical properties of Voronoi
tessellations resulting from non strictly Poissonian random processes. In particular, given
the obvious relevance in terms of applications, such as for packaging problems, a great
deal of attention has been directed towards tessellations resulting from points which are
randomly distributed in the space and are subjected to a minimal point-to-point distance δ—
a sort of hard-core nuclei hypothesis [29, 39]. Whereas the δ = 0 case corresponds to the
Poisson-Voronoi situation, it is observed that by increasing δ the degree of randomness of
the tessellation is decreased—the pdfs of the statistical properties of the geometrical char-
acteristics become more and more peaked—until for a certain critical δ-value a regular tes-
sellation, which in the 2D case is the hexagonal honeycomb one, is obtained. In any case, it
is found that the gamma distributions provide excellent fits for a very large range of values
of δ [39].

In this paper we want to explore a somewhat different problem of parametric dependence
of the Voronoi tessellation statistics. We start from three regular polygonal tessellations
of the plane, the honeycomb hexagonal, the square, and triangular tessellations. They are
obtained by setting the points xi as vertices of regular triangles, squares, and hexagons,
respectively. Using an ensemble-based approach, we study the break-up of the symmetry of
the three systems and quantitatively evaluate how the statistical properties of the geometrical
characteristics of the resulting 2D Voronoi cells change when we perturb with a spatially
homogeneous Gaussian noise of increasing intensity the positions of the points xi . Our paper
is organized as follows. In Sect. 2 we describe the methodology of work and the set of
numerical experiments performed. In Sect. 3 we show our results. In Sect. 4 we present our
conclusions and perspectives for future work.

2 Data and Methods

2.1 Scaling Properties of Voronoi Tessellations

Let’s first consider a homogeneous Poisson point process Ψ generating as output a random
set of points X in the Euclidean plane such that the expectation value for the number of
points xi belonging, without loss of generality, to a square region Γ is ρ0|Γ | = ρ0R

2, where
ρ0 is the intensity of the process, |Γ | is the measure of Γ and R is the side of the square. The
fluctuations are of the order of

√
ρ0|Γ | = √

ρ0R. If ρ0|Γ | � 1, we are in the thermodynamic
limit and the number of Voronoi cells inside Γ is NV ≈ ρ0|Γ |, so that boundary effects are
negligible. The point density ρ0 can thus be scaled to unity, or, alternatively, the domain
can be scaled to the square Γ1 = [0,1] × [0,1]. We will stick to the second perspective.
Theoretical results suggest that the ensemble mean—where the statistics is computed over
all realizations of the random process—of the number of sides of the Voronoi cells inside
Γ is 〈μ(n)|PV 〉 = 6 (PV indicates Poisson-Voronoi), which agrees with the general Euler’s
theorem on planar graphs with trivalent vertices. Moreover, the ensemble mean of the area
of the Voronoi cell is 〈μ(A)|PV 〉 = 1/ρ0, and the ensemble mean of the perimeter of a
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Voronoi cell is 〈μ(P )|PV 〉 = 4/
√

ρ0. Therefore, the ensemble mean statistical properties of
the Poisson-Voronoi tessellation are intensive, as they depend on the intensive parameter
ρ0. For clarity’s sake, we specify that the expression μ(Y ) (σ (Y )) refers to the mean value
(standard deviation) of the variable Y over the ρ0 cells for the single realization of the
random process. The expression 〈E〉 (δ[E]), instead, indicates the ensemble mean (standard
deviation) of the random variable E.

We then consider a random point process Φ generating a spatially periodic distribution of
points xi in the plane, where the discrete translational symmetry is generated by the lattice
vectors 	v1 and 	v2. If R � |	v1|, |	v2|, the expectation value of the number of xi ’s belonging
to a square region Γ , independently of its position in the plane, can also be expressed as
ρ0|Γ | = ρ0R

2, where ρ0 is the coarse-grained intensity of the process. Also in this case,
we can assume the thermodynamic approximation and rescale our domain to the square
Γ1 = [0,1] × [0,1], with 1 � |	v1|, |	v2| and ρ0 � 1. Using scaling arguments, one obtains
that for these processes, 〈μ(A)〉, 〈σ(A)〉 ∝ 1/ρ0 and 〈μ(P )〉, 〈σ(P )〉 ∝ 1/

√
ρ0, where the

proportionality constants depend on the specific process considered. Therefore, by multiply-
ing the ensemble mean estimators of the mean and standard deviation of the area (perimeter)
of the Voronoi cells times ρ0 (

√
ρ0), we obtain universal functions.

2.2 Simulations

As a starting point, we consider the three regular tessellations of the plane. These are special
cases of the above-mentioned Φ random periodic point processes where the distribution of
points is given by a collection of Dirac’s delta’s, each centered in a point xi belonging to a
regular grid.

If we consider a regular square grid of points xi with sides l = |	v1| = |	v2|, 	v1⊥	v2, the
Voronoi cell Πi corresponding to xi is given by the square centered in xi with the same side
length and orientation as the xi grid, so that the grid of the vertices yi of the tessellation is
translated with respect to the xi grid by l/2 in both orthogonal directions (the verse is not
relevant). Therefore, the vertices of the Voronoi tessellation resulting from the points yi are
nothing but the initial points xi . If l = lS = 1/

√
ρ0 = |	v1| = |	v2|, we will have ρ0 points—

and ρ0 corresponding square Voronoi cells—in Γ1 = [0,1] × [0,1]. Similarly, a regular
hexagonal honeycomb tessellation featuring ρ0 points and ρ0 corresponding regular Voronoi
cells in Γ1 = [0,1] × [0,1] is obtained by using a grid of points xi set as regular triangles

with sides lT =
√

2/(
√

3ρ0) = |	v1| = |	v2|, where the angle between 	v1 and 	v2 is 60◦. Finally,
the regular triangular tessellation featuring a density ρ0 of Voronoi cells derives from a reg-

ular grid of points xi set as hexagons with sides lH =
√

4/(3
√

3ρ0) = |	v1|/
√

3 = |	v2|/
√

3,
again with an angle of 60◦ between the 	v1 and 	v2. Therefore, the regular hexagonal and the
regular triangular tessellation are conjugate via Voronoi tessellation.

For all regular grids, we introduce a symmetry-breaking 2D-homogeneous ε-Gaussian
noise, which randomizes the position of the points xi about their deterministic positions with
a spatial variance |ε2|. We define |ε2| = α2l2

S = α2/ρ0, thus expressing the mean squared dis-
placement as a fraction α2 of the inverse of the density of points, which is the natural squared
length scale. In all cases, when ensembles are considered, the probability distribution of the
points xi is still periodic.

By definition, if α = 0 we are in the deterministic case. We study how the statistical prop-
erties of n, P , and A of the Voronoi cells change with α, covering the whole range going
from the symmetry breaking, occurring when α becomes positive, up to the progressively
more and more uniform distribution of xi , obtained when α is large with respect to 1, so
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that the distributions of nearby points xi overlap more and more significantly. We then per-
form our statistical analyses by considering M = 1000 members of the ensemble of Voronoi
tessellations generated for each value of α ranging from 0 to 5 with step 0.01. The actual
simulations are performed by using, within a customized routine, the MATLAB7.0® func-
tion voronoin.m, which implements the algorithm introduced by Barber et al. [3], to a set of
points xi having density ρ0 = 10000. Tessellation has been performed starting from points
xi belonging to the square [−0.2,1.2]× [−0.2,1.2] ⊃ Γ1 = [0,1]× [0,1], but only the cells
belonging to Γ1 have been considered for evaluating the statistical properties, in order to
limit density depletion in the case of large values of α due to one-step Brownian diffusion
of the points nearby the boundaries.

The distributions of n,P , and A are then fitted using a 2-parameter gamma distribution
with the MATLAB7.0® function gammafit.m, which implements a maximum likelihood
method.

3 Results

We expect that the exploration of the parametric range from α = 0 to α = 5 should allow us
to join on the two extreme situations of perfectly deterministic, regular tessellation, to the
tessellation resulting from a set of points X generated with a Poisson point process.

In the deterministic α = 0 case, it is easy to deduce the properties of the Voronoi cells
from basic Euclidean geometry. In all three cases, our construction implies ρ0μ(A)|α=0 = 1.
For square tessellation, we have μ(n)|α=0 = 4,

√
ρ0μ(P )|α=0 = 4, where the α-dependence

of the statistical properties is indicated. For honeycomb tessellation, we have μ(n)|α=0 = 6

and
√

ρ0μ(P )|α=0 =
√

24/
√

3, whereas, for triangular tessellation, we have μ(n)|α=0 = 3

and
√

ρ0μ(P )|α=0 =
√

36/
√

3. In all three cases, given the regular pattern in space, all cells
are alike, and given the deterministic nature of the tessellation, there are no fluctuations
within the ensemble.

3.1 Number of Sides of the Cells

In the case of the regular square tessellation, the introduction of a minimal amount of
symmetry-breaking noise induces a transition in the statistics of μ(n)|α and σ(n)|α , since
〈μ(n)|α〉 and 〈σ(n)|α〉 are discontinuous in α = 0. In Figs. 1a–1b we plot the functions
〈μ(n)|α〉 and 〈σ(n)|α〉; the half-width of the error bars are twice the corresponding values
of δ[μ(n)|α] and δ[σ(n)|α], whereas the Poisson-Voronoi values are indicated for reference.
We have that 〈μ(n)|α=0〉 = 4 �= 6 = 〈μ(n)|α=0+〉, where with α = 0+ we indicate the right
limit to 0 with respect to the parameter α, obtained numerically by considering very small
positive values of the parameter α. The regular square tessellation results to be structurally
unstable, as the introduction of noise breaks the special quadrivalent nature of the vertices
of the Voronoi cells and drives the system to the generic behavior described by Euler’s the-
orem. Moreover, 〈σ(n)|α=0〉 = 0 �= 0.93 ≈ 〈σ(n)|α=0+〉, which shows that the width of the
distribution of the number of sides is finite also for infinitesimal noise. The ensemble fluctu-
ations δ[μ(n)|α] and δ[σ(n)|α] are discontinuous functions in α = 0, since they reach a finite
positive value as soon as the noise is switched on. Considering larger values of α, we have
that 〈σ(n)|α〉 is numerically almost constant (within few percents) up to α ≈ 0.35, where
its value begins to quickly increase before reaching the asymptotic value 〈σ(n)|α〉 ≈ 1.33
for α > 2, which essentially coincides with what obtained in the Poisson-Voronoi case. The
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(a)

(b)
Fig. 1 (Color online) Ensemble mean of the mean: (a) and of the standard deviation; (b) of the number
of sides (n) of the Voronoi cells. Note that in (a) the number of sides of all cells is 4 (3) out of scale—for
α = 0 in the case of regular square (triangular) tessellation. Half-width of the error bars is twice the standard
deviation computer over the ensemble. Poisson-Voronoi limit is indicated
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function 〈μ(n)|α〉 is, in agreement with Euler’s law, constant within few permils around the
value of 6 for all α > 0, so that the mean topological charge is zero. These results suggest
that, topologically speaking, the route to randomness from the square regular tessellation
to the Poisson-Voronoi case goes through a finite range 0 < α < 0.35, where the statistical
properties of the topology of the cells are rather stable. Moreover, in this range, hexagons
dominate and their fraction is almost constant (within few percents), whereas for larger val-
ues of α, the fraction of hexagon declines but is still dominant (not shown).

Similarly, the triangular tessellation results to be unstable: we have that 〈μ(n)|α=0〉 =
3 �= 6 = 〈μ(n)|α=0+〉 and 〈σ(n)|α=0〉 = 0 �= 1.17 ≈ 〈σ(n)|α=0+〉, and again the ensemble
fluctuations δ[μ(n)|α] and δ[σ(n)|α] are discontinuous functions in α = 0. As expected, for
all values α > 0, 〈μ(n)|α〉 = 6, with hexagons being the dominant class of polygons. The
introduction of an infinitesimal noise destroys the peculiar hexagonal nature of the vertices
of the Voronoi cells and makes the system obey the Euler’s theorem. Also in this case, we
find a finite range 0 < α < 0.45—slightly wider than for the square tessellation—such that
〈σ(n)|α〉 and the fraction of hexagons, are numerically almost constant. This property seems
to define robustly a topologically quasi-stable weakly perturbed state.

When considering the regular hexagonal honeycomb tessellation, the impact of introduc-
ing noise in the position of the points xi is quite different from what previously observed.
Results are also shown in Figs. 1a–1b. The first feature is that an infinitesimal noise does
not effect at all the tessellation, in the sense that all cells remain hexagons. Moreover, even
finite-size noise basically does not distort cells in such a way that figures other than hexagons
are created. We have not observed non n = 6 cells for up to α ≈ 0.12 in any member of the
ensemble. This has been confirmed also considering larger densities (e.g. ρ0 = 1000000). It
is more precise, though, to frame the structural stability of the hexagon tessellation in prob-
abilistic terms: the creation of a non-hexagons is very unlikely for the considered range.
Since the presence of a Gaussian noise induces for each point xi a probability distribution
in space with—an unrealistic—non-compact support, it is possible to have low-probability
outliers that, at local level, can distort heavily the tessellation. Anyway, for all values of
α we have that 〈μ(n)|α〉 = 6 within few permils, as imposed by the Euler’s theorem. For
α > 0.12, 〈σ(n)|α〉 is positive and increases monotonically with α; this is accompanied by a
monotonic decrease with α of the fraction of hexagons, which are nevertheless dominant for
all values of α. For α > 0.5 the value of 〈σ(n)|α〉 is not distinguishable from what obtained
for perturbed square and triangular tessellations, This implies that from a statistical point of
view, the variable n loses memory of its unperturbed state already for a rather low amount
of Gaussian noise, well before becoming indistinguishable from the fully random Poisson
case.

3.2 Area and Perimeter of the Cells

For all of the perturbed regular tessellation considered in this study, the parametric depen-
dence on α of the statistical properties of the area of the Voronoi cells is more regular than
for the case of the number of sides. Results are shown in Figs. 2a–2b.

In general, the ensemble mean value 〈μ(A)|α〉 of the area of the Voronoi cells is, basically
by definition, constrained to be ρ0〈μ(A)|α〉 = 1 for all values of α, whereas for all perturbed
tessellation the fluctuations δ[μ(A)|α] increase with α and reach for α > 3 an asymptotic
value, coinciding with that observed in the Poisson-Voronoi case. The α-dependence of
〈σ(A)|α〉 is more interesting. We first note that the functions 〈σ(A)|α〉 computed from the
three perturbed tessellation are very similar, and the same occurs for δ[σ(A)|α]. This implies
that the impact of adding noise in the system in the variability of the area of the cells is
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(a)

(b)
Fig. 2 (Color online) Ensemble mean of the mean: (a) and of the standard deviation; (b) of the area (A) of
the Voronoi cells. Half-width of the error bars is twice the standard deviation computer over the ensemble.
Poisson-Voronoi limit is indicated. In (b), linear approximation for small values of α is also shown. Values
are multiplied times ρ0 in order to give universality to the ensemble mean results
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quite general and does not depend on the unperturbed patterns. We can be confident of the
generality of this result also because for relatively small values of α (say, α < 0.5), 〈σ(A)|α〉
has a specific functional form reminding of symmetry breaking behavior: in such a range
we have that 〈σ(A)|α〉 ≈ 1.1〈σ(A)|PV 〉 × α. The agreement with a linear approximation
is worse for the triangular tessellation case. For α > 2, 〈σ(A)|α〉 is almost indistinguishable
from the Poisson-Voronoi value, so that we can estimate an asymptotic value ρ0〈σ(A)|PV 〉 ≈
0.53.

Results for the statistical estimators of the perimeter of the Voronoi cells are shown in
Figs. 3a–3b. When considering the perturbed square tessellation, 〈μ(P )|α〉 basically coin-
cides with that of the Poisson-Voronoi case for α > 1. Note that also

√
ρ0〈μ(P )|α=0〉 = 4,

which also agrees with the asymptotic Poisson-Voronoi limit. Anyway 〈μ(P )|α〉 is a func-
tion with some interesting structure: for α = αm ≈ 0.25, 〈μ(P )|α〉 features a distinct mini-
mum 〈μ(P )|α=αm〉 ≈ 0.975〈μ(P )|V 〉, whereas for α = αM ≈ 0.75 a maximum for 〈μ(P )|α〉
is realized, with 〈μ(P )|α=αM

〉 ≈ 1.01〈μ(P )|V 〉. The unperturbed honeycomb hexagonal tes-
sellation is optimal in the sense of perimeter-to-area ratio, and, when noise is added, the
corresponding function 〈μ(P )|α〉 increases quadratically (not shown) with α for α < 0.3,
whereas for α > 0.5 its value coincides with what obtained starting from the regular
square tessellation. Finally, in the case of triangular tessellation, the unperturbed case fea-
tures the largest perimeter-to-area ratio, which is strongly reduced as soon as the noise is
switched on, so that a relative minimum is then obtained again for α = αm̄ ≈ 0.5, with
〈μ(P )|α=αm̄

〉 ≈ 1.05〈μ(P )|PV 〉. For α > 0.6 the value of the function 〈μ(P )|α〉 basically
coincides with those resulting from the two other tessellations.

We deduce that there is, counter-intuitively, a specific amount of noise which optimizes
the mean perimeter-to-area ratio for the two unstable regular tessellation—corresponding
to α = αm for the square one and to α = αm̄ for the triangular one—whereas, for α = αM

the opposite is realized for all tessellations. When considering the functions 〈σ(P )|α〉, we
are in a similar situation as for the statistics of mean cells area: the result of the impact
of noise is the same for all tessellations. For α < 0.5, 〈σ(P )|α〉 is proportional to α, with
〈σ(P )|α〉 ≈ 1.05〈σ(P )|PV 〉 × α; also in this case the triangular tessellation has a worse
agreement with this low-noise approximation. Moreover, for α > 2, 〈σ(P )|α〉 becomes in-
distinguishable from the asymptotic value realized for Poisson-Voronoi process, given by√

ρ0〈σ(P )|PV 〉 ≈ 0.98.

3.2.1 Area and Perimeter of n-Sided Cells

A subject of intense investigation has been the characterization of the geometrical properties
of n-sided cells; see [20] and references therein for a detailed discussion. We have then
computed the for the considered range of α the quantities 〈μ(A)|α〉n, δ[μ(A)|α]n, 〈μ(P )|α〉n,
and δ[μ(P )|α]n, obtained by stratifying the outputs of the ensemble of simulations with
respect to the number of sides n of the resulting cells. The 2-standard deviation confidence
interval centered around the ensemble mean is shown as a function of n in Figs. 4a–4b for
the area and the perimeter of the cells, respectively, for selected values of α. Note that for
larger values of n the error bar is larger because the number of occurrences of n-sided cells
is small.

The results of the three perturbed regular tessellations basically agree for α > 0.5, thus
confirming what shown previously. In particular, for α > 2, the results coincide with what
resulting from the Poisson-Voronoi case. In this regime, we verify the Lewis law [24], i.e.
〈μ(A)|α〉n ≈ a1/ρ0(n + a2). Our data give a1 ≈ 0.23, which is slightly less than what re-
sulting from the asymptotic computation by Hilhorst [19], who obtained a linear coef-
ficient of 0.25. Secondly, and, more interestingly, we confirm that Desch’s law [11] is
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(a)

(b)

Fig. 3 (Color online) Ensemble mean of the mean: (a) and of the standard deviation; (b) of the perimeter (P )
of the Voronoi cells. Half-width of the error bars is twice the standard deviation computer over the ensemble.
Poisson-Voronoi limit is indicated. In (b), linear approximation for small values of α is also shown. Values

are multiplied times ρ
1/2
0 in order to give universality to the ensemble mean results
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(a)

(b)

Fig. 4 (Color online) Ensemble mean of the area A: (a) and of the perimeter P ; (b) of n-sided Voronoi
cells. Half-width of the error bars is twice the standard deviation computer over the ensemble. Full ensemble
mean is indicated. Linear (a) and square root (b) fits of the Poisson-Voronoi limit results as a function of n

is shown. Values are multiplied times ρ0 (a) and ρ
1/2
0 (b) in order to give universality to the ensemble mean

results. See also Fig. 5
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violated, i.e. 〈μ(P )|α〉n �= b1(n + b2), as shown, e.g. by Zhu [39]. Nevertheless, instead
of a polynomial dependence on n, we find that a square root law can be established,
i.e. 〈μ(P )|α〉n ≈ c1/

√
ρ0(

√
n + c2). Our data give c1 ≈ 1.71, again slightly less than the

asymptotic computation by Hilhorst [19], who obtained c1 = √
π ≈ 1.77. We note that

the Lewis law and such law allow the establishment of a weakly n-dependent relation-
ship such as 〈μ(A)|α〉n ∝ [〈μ(P )|α〉n]2, which is re-ensuring and self-consistent at least
in terms of dimensional analysis. Moreover, this agrees with the asymptotic result for large
n, 〈μ(A)|α〉n = 1

4π
[〈μ(P )|α〉n]2, which derives from the fact that, as shown in [19], cells

with many sides tend to have a circular shape.
In the intermediate range (0.5 < α < 2), we have that the Lewis law and the square root

law are not verified, and, quite naturally, the functions 〈μ(A)|α〉n and 〈μ(P )|α〉n get more
and more similar to their Poisson-Voronoi counterparts as α increases.

An interesting result is that, for α > 1, ρ0〈μ(A)|α〉n=6 agrees within statistical uncertainty
of few permils with ρ0〈μ(A)|α〉 = 1. This implies that a1(6 + a2) ≈ 1 ⇒ a2 ≈ 1

a1
− 6 ≈

−1.65. Similarly, for α > 1,
√

ρ0〈μ(P )|α〉n=6 constitutes an excellent approximation within
1% to

√
ρ0〈μ(P )|α〉, whose value, as shown in Fig. 3a, is rather close to 4 for α > 1, but

agreement within statistical uncertainty is basically not found, except, marginally, for very
large values of α. This implies that c1

√
6 + c2 ≈ 4 ⇒ c2 ≈ ( 4

c1
)2 − 6 ≈ −0.49. The valid-

ity of these approximate equalities is highlighted in Fig. 5. The ensemble mean estimators
restricted to the non-hexagonal polygons are instead heavily biased (positive bias for n > 6
and negative bias for n < 6). The fact that the ensemble mean of the area and perimeter of
the Voronoi cells is so accurately approximated when selecting only the most probable state
from a topological point of view—hexagons—is surely striking, also because in the consid-
ered range hexagons are dominant but other polygons are also well-represented. In fact, for,
e.g. α > 1, the density of hexagons is smaller than the sum of the densities of pentagons and
heptagons.

3.3 Fitting the Probability Density Functions

In agreement with the findings by Zhu et al. [39] for a different parametric investigation of
2D Voronoi cells, we have that for α > 0, the empirical pdfs of cells area and perimeter can
be fitted with great precision using 2-parameter gamma distributions normalized to 1:

f (Y ; k, θ) = Y k−1 exp[−Y/θ ]
θkΓ (k)

(1)

where Y = P , A is a continuous variable, k and Γ (k) are positive parameters, and Γ (k)

is the usual gamma function evaluated at k. We consider 〈k(Y )|α〉 and 〈θ(Y )|α〉, which
are the ensemble means of the best fits of the gamma distribution parameters k and θ

for the variable Y . Since in the three cases considered of perturbed tessellations at lead-
ing order we have that 〈μ(Y )|α〉 = 〈k(Y )|αθ(Y )|α〉 ≈ 〈k(Y )|α〉〈θ(Y )|α〉 is constant and
〈σ 2(Y )|α〉 = 〈k(Y )|αθ2(Y )|α〉 ≈ 〈k(Y )|α〉〈θ2(Y )|α〉 ∝ α2 for small values of α, we derive
that 〈k(Y )|α〉 ∝ α−2 and 〈θ(Y )|α〉 ∝ α2, so that their values change by orders of magnitude
as noise is switched on.

Hilhorst [19] has proved in the case of Poisson-Voronoi processes that the asymptotic be-
havior the pdf of the number of sides n of Voronoi cells is not compatible with any discrete
(basically such that Y in (1) takes integer values) gamma distribution model. Nevertheless,
in agreement with the findings of Tanemura [32], we find that for Poisson-Voronoi processes
discrete gamma models provide excellent fits of the empirical pdfs. It may be argued that
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Fig. 5 (Color online) Agreement between the ensemble mean of the area A of the perimeter P of hexag-
onal Voronoi cells and the full ensemble mean. Half-width of the error bars is twice the standard deviation
computer over the ensemble

the asymptotic behavior becomes relevant only for very high values of n, which are sel-
dom obtained with actual simulations. Moreover, discrete gamma distribution models work
very well for all the considered non-singular cases—α > 0, for perturbed triangular and rec-
tangular tessellations and, within the numerical precision reached in this experiments, for
α > 0.12 when considering perturbed hexagonal tessellation.

4 Summary and Conclusions

This numerical study wishes to bridge the properties of the regular square, hexagonal,
and triangular Voronoi tessellations of the plane to those generating from Poisson point
processes, thus analyzing in a common framework symmetry breaking processes and the
approach to uniformly random distributions. This is achieved by resorting to a simple para-
metric form of random perturbations driven by a Gaussian noise to the positions of the points
around which the Voronoi tessellation is created. The standard deviation of the position of
the points induced by the Gaussian noise is expressed as |ε| = α/

√
ρ0, where α is the con-

trol parameter, ρ0 is the coarse-grained density of tessellation generating points, and 1/
√

ρ0

is the natural length scale. We consider as starting points the regular square, honeycomb
hexagonal, and triangular tessellations, and change the value of α from 0, where noise is
absent, up to 5. In this way, the probability distribution of points is in all cases periodic. For
each value of α, we perform a set of simulations, in order to create an ensemble of points
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and of corresponding Voronoi tessellation in the unit square, and compute the statistical
properties of n,A, and P , the number of sides, the area and the perimeter of the resulting
cell, respectively. The main results we obtain can be listed as follows:

• The symmetry breaking induced by the introduction of noise destroys the square and tri-
angular tessellations, which are structurally unstable: already for an infinitesimal amount
of noise a sharp transition occur, so that the ensemble mean of the mean and of the stan-
dard deviation of the number of sides have a discontinuity, finite ensemble fluctuations
appear, and the most common polygons turn out to be hexagons.

• Instead, the honeycomb hexagonal tessellation is very stable and all Voronoi cells are
found to be hexagon for finite noise up within a certain range of α(α < 0.12).

• The statistical properties of the number of sides of the Voronoi cells resulting from per-
turbed square and triangular tessellations are approximately constant for a finite range of
α (0 < α < 0.35 for the square and 0 < α < 0.45 for the triangular case, respectively),
This property seems to define robustly a topologically quasi-stable weakly perturbed state.

• Interesting signatures of symmetry breaking emerge from a linear relationship between
the standard deviation of the perimeter and the area of the Voronoi cells and the parameter
α for small values of α for all sorts of tessellations analyzed; in general, the ensemble
mean of the standard deviations of these quantities monotonically increase with α, in
agreement with the changeover towards a more extreme random nature of the tessellation.

• Already for a moderate amount of Gaussian noise (say α > 0.5), memory of the specific
initial unperturbed state is lost, because the statistical properties of the three perturbed
regular tessellations are indistinguishable.

• In the case of perturbed square (triangular) tessellation, for a specific intensity of the
noise determined by α = αm ≈ 0.25 (α = αm ≈ 0.5), it is possible to minimize the mean
perimeter-to-area ratio of the Voronoi cells, whereas by choosing α = αM ≈ 0.75 we
obtain a relative maximum for perimeter-to-area ratio for all perturbed tessellations.

• For large values of α (e.g. α > 2), quite expectedly, the statistical properties of the per-
turbed regular tessellations converge, both in terms of ensemble mean and fluctuations, to
those of the Poisson Voronoi process with the same intensity, since the points generating
the tessellations are from a practical point of view randomly and uniformly distributed in
the plane.

• For all values of α > 0, the 2-parameter gamma distribution family does a great job in
providing excellent models for fitting the distribution of sides, area, perimeters of the
Voronoi cells, the only exceptions being the singular distributions obtained for n in the
case of perturbed honeycomb tessellation for α < 0.12. This is especially surprising as
in the case of Poisson-Voronoi processes we have theoretical evidence showing that 2-
parameter discrete gamma models are not compatible with the asymptotic behavior of the
pdf of the number of sides of the Voronoi cells [19]. The reason why, practically speaking,
the 2-parameter gamma distribution functions constitute such efficient fitting models for
both the continuous and discrete variables considered here is still unclear.

• The geometrical properties of n-sided cells change with α until the Poisson-Voronoi limit
is reached for α > 2; in this limit the Desch law for perimeters is confirmed to be not
valid and a square root dependence on n, which allows an easy link to the Lewis law for
areas, is established.

• The ensemble mean of the cells area and perimeter restricted to the hexagonal cells pro-
vides a striking approximation to the full ensemble mean for α > 1; this reinforces the
idea that hexagons, apart from their bare numerical prominence, can be taken as typical
polygons in 2D Voronoi tessellations.
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In previous works much larger densities of points have been considered—up to several
million [32]. In this work, those numbers would be rather inconvenient because we perform
a parametric study of ensemble runs. Nevertheless, we wish to emphasize that whereas, as
discussed in the text, the choice of ρ0 does not alter any of the result on the ensemble mean
of statistical properties of the intensive quantities n,A, and P , larger values of ρ0 would
allow for smaller ensemble fluctuations. A related benefit of using larger values of ρ0 is
the possibility of computing the statistics on n-sided cells on a larger number of classes
of polygons, since the probability of detecting a n-sided polygons decreases very quickly
with n.

A topic that has been left aside in the present work is the study of the joint statistical
properties of the number of sides of neighboring cells. This matter is especially worth ex-
ploring given the recent explanation of the violation of the Aboav’s law for Poisson-Voronoi
tessellations [20].

The results here described may be useful in understanding the mechanical (and maybe
electronic) properties of graphene, which has recently received a great deal of attention
as first example of truly atomic 2D crystalline matter [16]. In fact, in graphene atoms are
positioned in a regular hexagonal honeycomb structure and therefore the Voronoi tessellation
is given, as explained in Sect. 2, by regular triangles. We have shown in this work that such
tessellation is rather peculiar as it maximizes the perimeter-to-area ratio of the Voronoi cells
and its topology is unstable with respect to infinitesimal dislocations of the initial points,
thus being affected by vibrational motions and defects.

Finally, we believe that it is definitely worthy to extend this study to the 3D case, which
might be especially significant for solid-state physics applications, with particular regard
to crystals’ defects and electronic impacts of vibrational motion in various discrete rota-
tional symmetry classes [5]. The analysis of the properties of the various cubic crystalline
structure is especially promising. Nevertheless, a much larger computational cost has to be
expected, since a larger number of points and a larger computing time per point are required
for sticking to the same precision in the evaluation of the statistical properties.

Acknowledgements The author wishes to thank F. Bassani, R. Benzi, A. Speranza for stimulating conver-
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